交流穩(wěn)壓電源范文
時間:2023-04-01 05:08:56
導(dǎo)語:如何才能寫好一篇交流穩(wěn)壓電源,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。
篇1
關(guān)鍵詞:穩(wěn)壓電源; 交流穩(wěn)壓電源; 脈沖寬度調(diào)制器; 高頻電子變壓器
中圖分類號:TP368.1 文獻(xiàn)標(biāo)識碼:B
文章編號:1004-373X(2010)10-0204-03
Design of Switch-Mode AC Stabilized Voltage Supply
XU Jin-xing, XU Chang-hua
(Research & Development Center of Electronic Products Equipment Manufacture of Jiangsu Province, Huaian 223003, China)
Abstract:An advanced design of AC stabilized voltage power supply is expounded in this paper. The pulse width modulator (PWM), high-speed electronic switches, high-frequency electronic transformer, and LC filters was adopted to realize the design. In comparison with AC stabilized voltage supply of the traditional thyristor angle modulation mode, this scheme is ofhigher efficiency, smaller size, smaller nonlinear distortion and it is an entirely new design of AC stabilized voltage supply.
Keywords:stabilized voltage supply; AC stabilized voltage supply; PWM; high-frequency electrosic transformer
目前,空間技術(shù)、計算機(jī)、通信、雷達(dá)及家電中的電源逐漸被開關(guān)電源所取代?,F(xiàn)在一般應(yīng)用的串聯(lián)調(diào)整穩(wěn)壓電源是連續(xù)控制的線性穩(wěn)壓電源。這種傳統(tǒng)的串聯(lián)穩(wěn)壓器、調(diào)整管總是工作在放大區(qū),流過的電流是連續(xù)的,這種穩(wěn)壓器的缺點是承受過載和短路的能力差,效率低,一般只有35%~60%。由于調(diào)整管要損耗較大的功率,所以需要采用大功率調(diào)整管,并裝有體積很大的散熱器[1]。而開關(guān)電源的調(diào)整管工作在開關(guān)狀態(tài),功率損耗小,效率可達(dá)70%~95%,穩(wěn)壓器的體積小,重量輕,調(diào)整管的功率損耗較小,散熱器也隨之減小[2]。此外,開關(guān)頻率工作在幾十kHz,可用數(shù)值較小的濾波電感、電容元件,故可以大大提高允許的環(huán)境溫度。
1 電路組成及工作原理
開關(guān)式交流穩(wěn)壓電源電路框圖如圖1所示。工作原理描述:由三角波發(fā)生電路產(chǎn)生150 kHz的三角波,由低頻正弦波產(chǎn)生電路產(chǎn)生50 Hz的正弦波。兩個信號分別同時送到比較器的同相和反相輸入端,在比較器的輸出端將產(chǎn)生矩形波。該矩形波的頻率與150 kHz的三角波相同,該矩形波的脈沖寬度受50 Hz正弦波實時幅度的調(diào)制后,隨50 Hz正弦波實時幅度而變化,即已調(diào)制矩形波。將其送到高速電子開關(guān)中一個輸入端,并經(jīng)過一級反向器反向,送到高速電子開關(guān)的另外一個輸入端。
圖1 開關(guān)式交流穩(wěn)壓電源電路拓?fù)鋱D
市電整流濾波獲得的2倍于輸入交流電壓(典型值約為311 V)的直流高電壓送到高速電子開關(guān)的電源輸入端。高速電子開關(guān)的兩個輸出端由兩個反向的輸入矩形波驅(qū)動,從約311 V直流電源取得能量后,分別經(jīng)過一級短時間常數(shù)的LC濾波電路連接到高頻開關(guān)變壓器的初級。該LC 濾波電路的作用是使進(jìn)入高頻開關(guān)變壓器初級的矩形波脈沖拐角趨于圓滑,以降低其高頻諧波。高頻開關(guān)變壓器的初、次級還起到對市電隔離的作用,高頻開關(guān)變壓器的次級獲得交變、拐角圓滑的矩形波電壓,經(jīng)過多級長時間常數(shù)的LC濾波電路,將150 kHz高頻信號濾除,還原出50 Hz正弦波的調(diào)制信號,送到負(fù)載用于對負(fù)載供電[3]。
電壓和電流取樣電路從負(fù)載上獲取電壓和電流信號,分別送兩路A/D 轉(zhuǎn)換器轉(zhuǎn)換,變成離散的數(shù)字信號。一方面用于通過微處理器處理后進(jìn)行實時顯示;另一方面用于通過微處理器處理后送D/A 轉(zhuǎn)換器變換為模擬量,經(jīng)過光電隔離驅(qū)動電路來控制正弦波發(fā)生器的幅值,又經(jīng)過比較器、反向器、高速電子開關(guān)、LC 濾波、高頻開關(guān)變壓器、多級LC 濾波等電路,用于控制負(fù)載上電壓或電流的穩(wěn)定。電壓互感器的作用是從市電中獲得低諧波失真的標(biāo)準(zhǔn)正弦波,經(jīng)由正弦波產(chǎn)生電路控制其幅值;鍵盤用于輸入準(zhǔn)備向負(fù)載提供的電壓或電流值。
2 電路設(shè)計分析
2.1 可控正弦波產(chǎn)生電路
可控正弦波產(chǎn)生電路的電路圖如圖2所示[2]。
正弦波的來源采用直接從市電的220 V/50 Hz的正弦波,利用電壓互感器變換成較低電壓的50Hz 正弦波(例如5 V)。該正弦波的諧波失真度取決于市電的諧波失真度和互感器的參數(shù),其輸出幅度由D/A 轉(zhuǎn)換器控制光電耦合器驅(qū)動電路實現(xiàn),D/A轉(zhuǎn)換器輸出信號控制光電耦合器導(dǎo)通程度,與分壓電阻分壓后產(chǎn)生交流和直流疊加的電壓,經(jīng)電容隔離直流分量,僅保留交流分量送運(yùn)算放大器進(jìn)行若干倍的放大,產(chǎn)生隨D/A信號幅度大小而控制的純凈交流信號量。
圖2 可控正弦波產(chǎn)生電路
D/A控制信號產(chǎn)生的原則是:根據(jù)輸出到負(fù)載上的電壓或電流配合市電的電壓幅度大小進(jìn)行綜合運(yùn)算,由微處理器向D/A 轉(zhuǎn)換器提供通過綜合運(yùn)算的數(shù)字量,使得提供給負(fù)載的輸出電壓(或電流)趨于穩(wěn)定。
2.2 脈沖寬度調(diào)制器
PWM產(chǎn)生電路由正弦波產(chǎn)生電路、三角波產(chǎn)生電路和比較器三個部分組成。三角波加到比較器的反向輸入端,正弦波加到比較器的同向輸入端,比較器輸出端產(chǎn)生受正弦波瞬時幅度而變化的脈沖寬度調(diào)制波[4-5]。
圖3是電壓型PWM比較器的工作波形,輸入三角波接在比較器的反向輸入端,可控正弦波信號送至比較器的同相輸入端,經(jīng)放大后輸出PWM信號。
圖3 PWM工作波形圖
2.3 高速電子開關(guān)
高速電子開關(guān)電路用于實現(xiàn)將PWM波功率放大,配合高頻電子變壓器和濾波電路,可實現(xiàn)對輸入信號為受某信號參數(shù)調(diào)制的矩形波,輸出信號為還原出該參數(shù)的解調(diào)電路[6]。其典型電路圖如圖4所示,是PWM經(jīng)反相器出來的波形。整個電路由4個場效應(yīng)管構(gòu)成的橋式開關(guān)電路、高頻開關(guān)變壓器、多組LC 濾波電路(圖中只畫出一組L3,C3)組成。
圖4 高速電子開關(guān)電路
高頻開關(guān)變壓器Tr還兼起市電隔離的作用。電路中,L1,C1 和L2,C2 組成濾波電路,用以使輸入到高頻開關(guān)變壓器初級的矩形波拐角變成“緩變”形狀,以使流經(jīng)變壓器的諧波分量減小,降低干擾。
經(jīng)過高頻開關(guān)變壓器次級感應(yīng)到的電壓通過L3,C3(實際為多級LC,如三級)的進(jìn)一步濾波可以將PWM的高頻矩形波濾除,在負(fù)載上得到被還原的原調(diào)制波的正弦波形,如圖5所示。
圖5 還原出來的波形
圖5中還原出來的調(diào)制波實際上是有一定程度的鋸齒波成分,如果用數(shù)字存儲示波器存儲波形,然后局部放大觀測可發(fā)現(xiàn),如圖5中顯示了局部放大后的鋸齒形狀,其鋸齒程度反映了信號的失真度,與多級LC濾波器的性能參數(shù)有關(guān)。
2.4 微處理器
微處理器部分用于實現(xiàn)系統(tǒng)裝置的智能化,微處理器部分包括微處理器芯片、鍵盤、LCD 顯示器、A/D 和D/A 轉(zhuǎn)換器,且適合于控制的微處理器芯片往往采用單片機(jī),而單片機(jī)基本上都包含有I/O 接口電路、ROM,RAM、定時器和中斷系統(tǒng),因此這些部件基本上都不需要擴(kuò)展。
軟件部分的設(shè)計包括A/D轉(zhuǎn)換器、D/A轉(zhuǎn)換器、LCD顯示器、鍵盤系統(tǒng)等功能的子程序,還包含系統(tǒng)監(jiān)控程序和各種中斷服務(wù)程序等[7],其系統(tǒng)監(jiān)控程序流程圖如圖6所示。
圖6 系統(tǒng)監(jiān)控程序流程圖
3 結(jié) 語
在此介紹的開關(guān)式交流穩(wěn)壓電源是一種較為先進(jìn)的交流電源設(shè)計方案。隨著時代的快速發(fā)展,開關(guān)電源的集成化與小型化正在變?yōu)楝F(xiàn)實,目前正在研制開發(fā)開關(guān)與控制電路集成于同一芯片的集成模塊。然而,把功率開關(guān)與控制電路,包括反饋電路都集成于同一芯片上,必須解決電氣隔離與熱絕緣的問題,這將是今后的一大研究課題。
參考文獻(xiàn)
[1]李靖.中國開關(guān)電源市場的分析[J].電工技術(shù),2000(2):44-45.
[2]王兆安,黃俊.電力電子技術(shù)[M].4版.北京:機(jī)械工業(yè)出版社,2003.
[3]劉勝利.現(xiàn)代高頻開關(guān)電源實用技術(shù)[M].北京:電子工業(yè)出版社,2001.
[4]阮新波,嚴(yán)仰光.脈寬調(diào)制DC/DC全橋變換器的軟開關(guān)技術(shù)[M].北京:科學(xué)出版社,1999.
[5]李琪.PWM全橋軟開關(guān)直流變換器的研究[D].杭州:浙江大學(xué),2006.
篇2
>> 基于PWM的開關(guān)穩(wěn)壓電源的設(shè)計 開關(guān)穩(wěn)壓電源的設(shè)計與制作 降壓型直流開關(guān)穩(wěn)壓電源的設(shè)計 開關(guān)式交流穩(wěn)壓電源的設(shè)計 一種基于UC3842的新型開關(guān)穩(wěn)壓電源設(shè)計 基于單片機(jī)的PWM型開關(guān)穩(wěn)壓電源設(shè)計 基于LM5117的降壓型直流開關(guān)穩(wěn)壓電源設(shè)計 基于MSP430單片機(jī)的開關(guān)穩(wěn)壓電源設(shè)計 基于PLC的單相穩(wěn)壓電源裝置設(shè)計 數(shù)控穩(wěn)壓電源的設(shè)計 PWM開關(guān)穩(wěn)壓電源系統(tǒng)設(shè)計分析 一種新型的復(fù)合式開關(guān)穩(wěn)壓電源的設(shè)計 一種高效率的開關(guān)穩(wěn)壓電源的設(shè)計 探討開關(guān)型穩(wěn)壓電源的電路設(shè)計 降壓型直流開關(guān)穩(wěn)壓電源的設(shè)計與實現(xiàn) 基于集成穩(wěn)壓器的可調(diào)式直流穩(wěn)壓電源設(shè)計 基于單片機(jī)控制的穩(wěn)壓電源 關(guān)于直流穩(wěn)壓電源的設(shè)計 集成直流穩(wěn)壓電源的設(shè)計 一種可控穩(wěn)壓電源的設(shè)計 常見問題解答 當(dāng)前所在位置:l.
[2]林濤.數(shù)字電子技術(shù)[M].北京:清華大學(xué)出版社,2006.
[3]林濤.電子技術(shù)及其應(yīng)用基礎(chǔ)[M].北京:電子工業(yè)出版社,2005.
[4]林濤.模擬電子技術(shù)基礎(chǔ)[M].重慶:重慶大學(xué)出版社, 2001.
[5]楊欣.電子設(shè)計從零開始[M].北京:清華大學(xué)出版社, 2005.
[6]邱關(guān)源.電路[M].北京:高等教育出版社,1999.
基金項目:國家級物理學(xué)(師范類)特色專業(yè)項目(項目編號:TS12467);云南省基金(項目編號:2009CD097);楚雄師范學(xué)院大學(xué)生創(chuàng)新訓(xùn)練項目。
作者簡介:
吳興洲,現(xiàn)就讀于楚雄師范學(xué)院物理與電子科學(xué)院。
篇3
【關(guān)鍵詞】電子 線路實驗 分析
一、電源的應(yīng)用背景
電源可分為交流電源和直流電源,它是任何電子設(shè)備都不可缺少的組成部分。交流電源一般為220V、50HZ電源,但許多家用電器設(shè)備的內(nèi)部電路都要采用直流電源作為供電電源,如收音機(jī)、電視機(jī)、帶微控制處理的家電設(shè)備等都離不開這種電源。直流電源又分為兩種:一類是能直接供給直流電流或直流電壓,如電池、蓄電池、太陽能電池、硅光電池、生物電池等;另一類是將交流電變換成所需的穩(wěn)定的直流電流或電壓,這類變換電路統(tǒng)稱為直流穩(wěn)壓電路?,F(xiàn)在所使用的大多數(shù)電子設(shè)備中,幾乎都必須用到直流穩(wěn)壓電源來使其正常工作。220V、50HZ的單向交流電源變壓器降壓后,再經(jīng)過整流濾波可獲得低電壓小功率直流電源。然而,由于電網(wǎng)電壓可以有+10%變化。為此必須將整流濾波后的直流電壓由穩(wěn)壓電路穩(wěn)定后再提供給負(fù)載,使負(fù)載上直流電源電壓受上述因素的影響程度達(dá)到最小。直流電源電壓系統(tǒng)一般有四部分組成,他們分別是電源變壓器、整流電路,濾波電路、穩(wěn)壓電路。
二、總體設(shè)計
(一)設(shè)計的目的和任務(wù)
1、設(shè)計目的
(1)了解整流、電容濾波電路的工作原理;(2)掌握集晶體管穩(wěn)壓電源設(shè)計方法;(3)掌握仿真軟件EWB使用方法;(4)掌握穩(wěn)壓電源參數(shù)測試方法。
2、設(shè)計任務(wù)
(1)穩(wěn)壓電源的主要技術(shù)指標(biāo):① 電網(wǎng)供給的交流電壓為220V,50Hz;② 輸出電壓為6~12V;③ 輸出電阻《0.4Ω;④ 最大允許輸出電流2A; ⑤ 穩(wěn)壓系數(shù)S《8*10-?;⑥ 輸出紋波電壓《10mv(當(dāng)Io=2A);⑦ 具有限流保護(hù)功能,輸出短路電流
(2)設(shè)計要求:① 根據(jù)設(shè)計要求確定直流穩(wěn)壓電源的設(shè)計方案,計算和選取元件參數(shù)。② 完成各單元電路和總體電路的設(shè)計,并用計算機(jī)繪制電路圖。③ 完成電路的安裝、調(diào)試、使作品能達(dá)到預(yù)期的技術(shù)指標(biāo)。④ 給出測試各項技術(shù)指標(biāo)的方法,撰寫測試報告。
(二)設(shè)計原理
1.設(shè)計原理
電子線路在多數(shù)情況下需要用直流電源供電,而電力部門所提供的電源為220V、50HZ交流電,故應(yīng)首先經(jīng)過變壓,整流,然后在經(jīng)過濾波,和穩(wěn)壓,才能夠獲得穩(wěn)定的直流電穩(wěn)壓電路穩(wěn)定后再提供給負(fù)載,框圖如下:
2.串聯(lián)型晶體管穩(wěn)壓電路
晶體管串聯(lián)穩(wěn)壓電源的組成,220V交流市電經(jīng)過變壓,整流,濾波后得到的是脈動直流電壓Vi,他隨市電的變化或直流負(fù)載的變化而變化,所以,Vi是不穩(wěn)定的直流電壓,為此,必須增加穩(wěn)壓電路。穩(wěn)壓電路取樣電路,比較電路,基準(zhǔn)并電壓,和調(diào)整元件等部分組成
(三)總體設(shè)計方案
1.變壓環(huán)節(jié)
通電為電壓220V,頻率為50Hz,為了保證后面可調(diào)范圍為6~12V,選擇初次級線圈匝數(shù)比為2000:141的pq4-10
2.整流、濾波環(huán)節(jié)
實驗選擇4個IN4002的二極管作為整流電路
因為市電頻率是50Hz為低頻電路,選擇RC濾波電路。本實驗選擇的電容為1200μF
3.穩(wěn)壓環(huán)節(jié)
(1)調(diào)整元件。作為一個理想的電源,其內(nèi)阻應(yīng)該盡量小才能保證具有穩(wěn)壓的效果,根據(jù)晶體管放大器的知識可知:共集電極電路的輸出阻抗最小。所以選擇共集電極電路來實現(xiàn),且盡量選擇β值較大的晶體管,但是后來會發(fā)現(xiàn)并不是如此。由于電流和功耗等的影響,所以最好采用復(fù)合管來實現(xiàn)該要求,且有一個大功率管就可,本實驗該電路選擇的晶體管型號為2N3414(早期電壓為51V,測試前高電流拐點為4.6A,功率很大),其它兩管為小功率管MRF9011
(2)取樣電路。這部分由兩個電阻和電位器來實現(xiàn),通過調(diào)整電位器的使輸出電壓的可調(diào)范圍從6V到12V。
4.參數(shù)計算
輸出電壓 V0=5.982~12.15V
最大輸出電流2A
R0計算:Ro=ΔVo/ΔIo*Vo
RL=50 Vo=7.177V,Io=143.5mA
RL=100 Vo=7.181V,Io=71.82mA
R0=0.35
穩(wěn)壓系數(shù):s=0.038
Ro=ΔVo/ΔIo*Vi/V0
當(dāng)vi=23.16v時候,v0=7.176
當(dāng)vi=20.86v時候,v0=7.146
通過計算可得S=0.038
符合要求
紋波電壓20.1mv
輸出電流=3.016A
三、結(jié)束語
通過這次課程設(shè)計,我對于模電知識有了更深的了解,尤其是對串聯(lián)直流穩(wěn)壓電源方面的知識有了進(jìn)一步的研究。在電路的仿真過程中也提升了我的動手能力,實踐能力得到了一定的鍛煉,加深了對模擬電路設(shè)計方面的興趣,理論與實踐得到了很好的結(jié)合,加深自己對實用價值和理論的統(tǒng)一的了解,但對于理論和實際應(yīng)用的統(tǒng)一和對于器件在實際中的使用還有很大的不足,不能在使用器件時選擇合適的參數(shù)的器件,不能根據(jù)器件的編號知道器件的基本功能。在這方面需要很大的提高。
篇4
【關(guān)鍵詞】模擬電子技術(shù);演變形成;研究;適應(yīng)能力
模擬電子技術(shù)主要由以下幾個方面構(gòu)成:首先是含線性元器件以及非線性元器件組成的電子元器件,其中含線性元器件包括有電阻、電容以及電感等,非線性元器件包括有二極管、三極管等;其次是基本放大電路,其主要是以基本電子元器件所構(gòu)成,基本放大電路主要有共基、共射、共集三種形式的放大線路;最后是基本典型應(yīng)用電路。本文主要研究了模擬電子技術(shù)電路的演變形成過程。
一、功率放大電路的演變
功率放大器能夠為電路提供足夠大的負(fù)載信號功率。在一定的條件下(正弦波輸入、輸出基本不失真)。在電路參數(shù)確定的情況下,負(fù)載可能獲得的最大交流功率就是最大輸出功率。輸出大功率的能源來自電源提供的功率,在一定的輸出功率下降低直流電源的功耗能夠很好的提高電路的效率。功放在輸入信號的控制下會成為功率變換器,其作用是將電源的直流電轉(zhuǎn)換為負(fù)載需要的信號功率,由于功放管本身就會產(chǎn)生較大的耗散功率,因此為避免出現(xiàn)發(fā)熱現(xiàn)象,所以應(yīng)當(dāng)加入例如散熱片等保護(hù)裝置,在特殊情況下還需要應(yīng)用其它保護(hù)措施。在進(jìn)行操作時若想提高效率必須進(jìn)行無用管耗的減少,以實現(xiàn)有用輸出功率的提高,基于此,對于功放的靜態(tài)設(shè)置應(yīng)定為乙或丙類狀態(tài)下。已知的基本共集電極電路的特點是功放在電壓由多級電壓放大器提供時,只能承擔(dān)良好的帶負(fù)載或電流的放大能力,功放能夠基于此進(jìn)行演變。
二、穩(wěn)壓電源電路的演變
(一)穩(wěn)壓電源電路的特點
(1)作為電子設(shè)備能源的直流穩(wěn)壓電源,其與其他功率放大器一樣需要輸出大功率,并且需要在總負(fù)載狀態(tài)下運(yùn)行工作。
(2)直流穩(wěn)壓電源與供方有一個不同點,就是直流穩(wěn)壓電源是一個能源轉(zhuǎn)換電路,其能夠把需要的直流電通過電網(wǎng)交流電進(jìn)行轉(zhuǎn)換得到,由于其在負(fù)載變化以及交流電網(wǎng)波動的情況下還能夠使直流電壓保持穩(wěn)定,固稱為穩(wěn)壓電源,直流電源的核心就是其的穩(wěn)壓環(huán)節(jié),電路相對而言也比較復(fù)雜。
(二)穩(wěn)壓電源電路的演變過程
基本共集電極電路能夠滿足以上兩個特點,是電壓的負(fù)反饋,在輸出電壓時能夠滿足穩(wěn)定運(yùn)行要求,因此可以直接利用已知的射極跟隨器組成穩(wěn)壓電路,在電路中交流電通過電容和整流的過濾,形成直流電壓,為防止輸入端交流電網(wǎng)出現(xiàn)波動現(xiàn)象,需要介入穩(wěn)壓管,實現(xiàn)基極的穩(wěn)定電壓,同時也有利于射極跟隨輸出電壓的穩(wěn)定。為防止輸出端的負(fù)載發(fā)生變化,通過電壓負(fù)反饋對輸出電壓進(jìn)行穩(wěn)定處理,變化的電壓可以選擇利用調(diào)整管承受,同時由于調(diào)整管與負(fù)載是串聯(lián)著的,因此又稱為串聯(lián)型穩(wěn)壓電路。在該電路中由于靜態(tài)設(shè)置使調(diào)整管處于甲類線性放大區(qū),因此會造成效率低、管耗大等問題,在這種情況下,若想提高效率,應(yīng)當(dāng)演變從類狀態(tài)的設(shè)法,但是由于穩(wěn)壓電路不能夠?qū)ν忾_輸入信號進(jìn)行放大處理,因此只能對調(diào)整管進(jìn)行處理,使其處于開關(guān)狀態(tài),以此降低管耗。
(三)其他穩(wěn)壓電路的形成
在串聯(lián)型穩(wěn)壓電路中,如果甲類的靜態(tài)設(shè)置的調(diào)整管在線性放大區(qū),就會產(chǎn)生許多不利的因素,例如管耗大、效率低等,為了避免這些問題的出現(xiàn)常常使用的是乙類狀態(tài)的演變方式,但是這種情況也有弊端,其對于外來輸入信號無法進(jìn)行相關(guān)放大處理,因此只能使調(diào)整管保持在開關(guān)狀態(tài),以此來降低管耗量。在此基礎(chǔ)上,利用比較器控制和調(diào)整輸出電壓的反饋信號與外加振蕩的三角波輸出信號,使管導(dǎo)通與截止相互轉(zhuǎn)換工作,進(jìn)而利用濾波實現(xiàn)直流電壓的輸出,形成串聯(lián)開關(guān)調(diào)整型穩(wěn)壓電路的演變。
綜上所述我們可以得到,若想直接進(jìn)行有源負(fù)載、恒流源以及各種差分放大器的演變形成就需要應(yīng)用到基本共射極電路,各種運(yùn)放的線性與非線性應(yīng)用電路的形成可以利用基本反饋電路。
三、結(jié)束語
本文通過分析模擬電子技術(shù)的功率放大電路以及穩(wěn)壓電源電路的演變,總結(jié)歸納了模擬電子技術(shù)從已知到未知放大電路的一般規(guī)律和方法,闡述了其對放大電路中的各種電流、電壓等較強(qiáng)的適應(yīng)能力。
參考文獻(xiàn)
[1]童詩白.模擬電子技術(shù)基礎(chǔ)[M].北京:高等教育出版社(第2版),1999.
[2]童詩白,華成英.模擬電子技術(shù)基礎(chǔ)[M].北京:高等教育出版社(第3版),2001.
[3]吳鴻適.電子科學(xué)技術(shù)的發(fā)展[J].未來與發(fā)展,1984(3):48-50.
篇5
一、開關(guān)式穩(wěn)壓電源的基本工作原理
開關(guān)式穩(wěn)壓電源接控制方式分為調(diào)寬式和調(diào)頻式兩種,在實際的應(yīng)用中,調(diào)寬式使用得較多,在目前開發(fā)和使用的開關(guān)電源集成電路中,絕大多數(shù)也為脈寬調(diào)制型。因此下面就主要介紹調(diào)寬式開關(guān)穩(wěn)壓電源。
對于單極性矩形脈沖來說,其直流平均電壓Uo取決于矩形脈沖的寬度,脈沖越寬,其直流平均電壓值就越高。直流平均電壓U。可由公式計算,即Uo=Um×T1/T式中Um -矩形脈沖最大電壓值;
T -矩形脈沖周期;
T1 -矩形脈沖寬度。
從上式可以看出,當(dāng)Um與T不變時,直流平均電壓Uo將與脈沖寬度T1成正比。這樣,只要我們設(shè)法使脈沖寬度隨穩(wěn)壓電源輸出電壓的增高而變窄,就可以達(dá)到穩(wěn)定電壓的目的。
二、開關(guān)式穩(wěn)壓電源的原理電路
1、基本電路
交流電壓經(jīng)整流電路及濾波電路整流濾波后,變成含有一定脈動成份的直流電壓,該電壓進(jìn)人高頻變換器被轉(zhuǎn)換成所需電壓值的方波,最后再將這個方波電壓經(jīng)整流濾波變?yōu)樗枰闹绷麟妷骸?/p>
控制電路為一脈沖寬度調(diào)制器,它主要由取樣器、比較器、振蕩器、脈寬調(diào)制及基準(zhǔn)電壓等電路構(gòu)成。這部分電路目前已集成化,制成了各種開關(guān)電源用集成電路??刂齐娐酚脕碚{(diào)整高頻開關(guān)元件的開關(guān)時間比例,以達(dá)到穩(wěn)定輸出電壓的目的。
2.單端反激式開關(guān)電源
單端反激式開關(guān)電源的典型電路。電路中所謂的單端是指高頻變換器的磁芯僅工作在磁滯回線的一側(cè)。所謂的反激,是指當(dāng)開關(guān)管VT1導(dǎo)通時,高頻變壓器T初級繞組的感應(yīng)電壓為上正下負(fù),整流二極管VD1處于截止?fàn)顟B(tài),在初級繞組中儲存能量。當(dāng)開關(guān)管VT1截止時,變壓器T初級繞組中存儲的能量,通過次級繞組及VD1整流和電容C濾波后向負(fù)載輸出。
單端反激式開關(guān)電源是一種成本最低的電源電路,輸出功率為20-100W,可以同時輸出不同的電壓,且有較好的電壓調(diào)整率。唯一的缺點是輸出的紋波電壓較大,外特性差,適用于相對固定的負(fù)載。
單端反激式開關(guān)電源使用的開關(guān)管VT1承受的最大反向電壓是電路工作電壓值的兩倍,工作頻率在20-200kHz之間。
3.單端正激式開關(guān)電源
單端正激式開關(guān)電源的典型電路。這種電路在形式上與單端反激式電路相似,但工作情形不同。當(dāng)開關(guān)管VT1導(dǎo)通時,VD2也導(dǎo)通,這時電網(wǎng)向負(fù)載傳送能量,濾波電感L儲存能量;當(dāng)開關(guān)管VT1截止時,電感L通過續(xù)流二極管VD3繼續(xù)向負(fù)載釋放能量。
在電路中還設(shè)有鉗位線圈與二極管VD2,它可以將開關(guān)管VT1的最高電壓限制在兩倍電源電壓之間。為滿足磁芯復(fù)位條件,即磁通建立和復(fù)位時間應(yīng)相等,所以電路中脈沖的占空比不能大于50%。由于這種電路在開關(guān)管VT1導(dǎo)通時,通過變壓器向負(fù)載傳送能量,所以輸出功率范圍大,可輸出50-200W的功率。電路使用的變壓器結(jié)構(gòu)復(fù)雜,體積也較大,正因為這個原因,這種電路的實際應(yīng)用較少。
4.自激式開關(guān)穩(wěn)壓電源
自激式開關(guān)穩(wěn)壓電源的典型電路。這是一種利用間歇振蕩電路組成的開關(guān)電源,也是目前廣泛使用的基本電源之一。
當(dāng)接入電源后在R1給開關(guān)管VT1提供啟動電流,使VT1開始導(dǎo)通,其集電極電流Ic在L1中線性增長,在L2中感應(yīng)出使VT1基極為正,發(fā)射極為負(fù)的正反饋電壓,使VT1很快飽和。與此同時,感應(yīng)電壓給C1充電,隨著C1充電電壓的增高,VT1基極電位逐漸變低,致使VT1退出飽和區(qū),Ic開始減小,在L2中感應(yīng)出使VT1基極為負(fù)、發(fā)射極為正的電壓,使VT1迅速截止,這時二極管VD1導(dǎo)通,高頻變壓器T初級繞組中的儲能釋放給負(fù)載。在VT1截止時,L2中沒有感應(yīng)電壓,直流供電輸人電壓又經(jīng)R1給C1反向充電,逐漸提高VT1基極電位,使其重新導(dǎo)通,再次翻轉(zhuǎn)達(dá)到飽和狀態(tài),電路就這樣重復(fù)振蕩下去。這里就像單端反激式開關(guān)電源那樣,由變壓器T的次級繞組向負(fù)載輸出所需要的電壓。
自激式開關(guān)電源中的開關(guān)管起著開關(guān)及振蕩的雙重作從,也省去了控制電路。電路中由于負(fù)載位于變壓器的次級且工作在反激狀態(tài),具有輸人和輸出相互隔離的優(yōu)點。這種電路不僅適用于大功率電源,亦適用于小功率電源
5.推挽式開關(guān)電源
推挽式開關(guān)電源的典型電路。它屬于雙端式變換電路,高頻變壓器的磁芯工作在磁滯回線的兩側(cè)。電路使用兩個開關(guān)管VT1和VT2,兩個開關(guān)管在外激勵方波信號的控制下交替的導(dǎo)通與截止,在變壓器T次級統(tǒng)組得到方波電壓,經(jīng)整流濾波變?yōu)樗枰闹绷麟妷骸?/p>
這種電路的優(yōu)點是兩個開關(guān)管容易驅(qū)動,主要缺點是開關(guān)管的耐壓要達(dá)到兩倍電路峰值電壓。電路的輸出功率較大,一般在100-500W范圍內(nèi)。
6.降壓式開關(guān)電源
降壓式開關(guān)電源的典型電路。當(dāng)開關(guān)管VT1導(dǎo)通時,二極管VD1截止,輸人的整流電壓經(jīng)VT1和L向C充電,這一電流使電感L中的儲能增加。當(dāng)開關(guān)管VT1截止時,電感L感應(yīng)出左負(fù)右正的電壓,經(jīng)負(fù)載RL和續(xù)流二極管VD1釋放電感L中存儲的能量,維持輸出直流電壓不變。電路輸出直流電壓的高低由加在VT1基極上的脈沖寬度確定。
這種電路使用元件少,它同下面介紹的另外兩種電路一樣,只需要利用電感、電容和二極管即可實現(xiàn)。
7.升壓式開關(guān)電源
升壓式開關(guān)電源的穩(wěn)壓電路。當(dāng)開關(guān)管VT1導(dǎo)通時,電感L儲存能量。當(dāng)開關(guān)管VT1截止時,電感L感應(yīng)出左負(fù)右正的電壓,該電壓疊加在輸人電壓上,經(jīng)二極管VD1向負(fù)載供電,使輸出電壓大于輸人電壓,形成升壓式開關(guān)電源。
8.反轉(zhuǎn)式開關(guān)電源
篇6
1 開關(guān)電源的發(fā)展過程
開關(guān)電源是利用現(xiàn)代電力電子技術(shù),采用功率半導(dǎo)體器件作為開關(guān),通過控制開關(guān)晶體管開通和關(guān)斷的時間比率(占空比),調(diào)整輸出電壓,維持輸出穩(wěn)定的一種電源。早在20世紀(jì)80年代計算機(jī)電源全面實現(xiàn)了開關(guān)電源化,率先完成計算機(jī)電源換代,進(jìn)入90年代開關(guān)電源已廣泛應(yīng)用在各種電子、電器設(shè)備,程控交換機(jī)、通訊、電力檢測設(shè)備電源和控制設(shè)備電源之中。開關(guān)電源一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。開關(guān)電源和線性電源相比,兩者的成本都隨著輸出功率的增加而增長,但兩者增長速率各異。線性電源成本在某一輸出功率點上,反而高于開關(guān)電源,這一點稱為成本反轉(zhuǎn)點。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使的開關(guān)電源技術(shù)也不斷的創(chuàng)新,這一成本反轉(zhuǎn)點日益向低輸出電力端移動,從而為開關(guān)電源提供了廣闊的發(fā)展空間。
開關(guān)電源高頻化使其發(fā)展的方向,高頻化使開關(guān)電源小型化,并使開關(guān)電源更進(jìn)入更廣泛的應(yīng)用領(lǐng)域,特別是在高新技術(shù)領(lǐng)域的應(yīng)用,推動了高技術(shù)產(chǎn)品的小型化、輕便化。另外開關(guān)電源的發(fā)展與應(yīng)用在節(jié)約能源、節(jié)約資源及保護(hù)環(huán)境方面都具有重要的意義。
2 開關(guān)電源技術(shù)的發(fā)展趨勢
開關(guān)電源的發(fā)展方向是高頻、高可靠、低耗、低噪聲、抗干擾和模塊化。由于開關(guān)電源輕、小、薄的關(guān)鍵技術(shù)是高頻化,因此國外各在開關(guān)電源制造商都致力同步開發(fā)新型高智能化的元器件,特別是改善二次整流器件的損耗,并在功率鐵氧體(Mn-Zn)材料上加大科技創(chuàng)新,以提高在高頻率和較大磁通密度(Bs)下獲得高的磁性能,而電容器的小型化也是一項關(guān)鍵技術(shù)。SMT技術(shù)的應(yīng)用使得開關(guān)電源取得了長足的進(jìn)展,在電路板兩面布置元器件,以確保開關(guān)電源的輕、小薄。開關(guān)電源的高頻化就必然對傳統(tǒng)的PWM開關(guān)技術(shù)進(jìn)行創(chuàng)新,實現(xiàn)ZVS、ZCS的軟開關(guān)技術(shù)已成為開關(guān)電源的主流技術(shù),并大幅提高了開關(guān)電源的工作效率。對聯(lián)高可靠性指標(biāo),美國的開關(guān)電源生產(chǎn)商通過降低運(yùn)行電流,降低結(jié)溫等措施以減少器件的應(yīng)力,使得產(chǎn)品的可靠性大大提高。
模塊化是開關(guān)電源發(fā)展的總體趨勢,可以用模塊化電源組成分布式電源系統(tǒng),可以設(shè)計成N+1冗余電源系統(tǒng),并實現(xiàn)并聯(lián)方式的容量擴(kuò)展。針對開關(guān)電源運(yùn)行噪聲大這一缺點,若單獨追求高頻化,其噪聲也必將隨著增大,而用部分諧振轉(zhuǎn)換電路技術(shù),在理論上即可實現(xiàn)高頻化又可降低噪聲,但部分諧振轉(zhuǎn)換技術(shù)實際應(yīng)用仍存在著技術(shù)問題,故仍需在這一領(lǐng)域開展大量的工作,使得多項技術(shù)得以實用化。電力電子技術(shù)的不斷創(chuàng)新,開關(guān)電源產(chǎn)業(yè)有著廣闊的發(fā)展前景。要加快我國開關(guān)電源產(chǎn)業(yè)的發(fā)展速度就必須走技術(shù)創(chuàng)新之路,走出有中國特色的產(chǎn)學(xué)研聯(lián)合發(fā)展之路,為我國國民經(jīng)濟(jì)的高速發(fā)展做出貢獻(xiàn)。
3 開關(guān)電源的分類
隨著電力電子器件和開關(guān)變頻技術(shù)幾乎同步開發(fā)的前提下,兩者相互促進(jìn)與推動,開關(guān)電源每年以超過兩位數(shù)字的增長率,向輕、小、薄、低噪聲、高可靠、抗干擾的方向發(fā)展。開關(guān)電源科分為AC/DC和DC/DC兩大類。DC/DC變換器現(xiàn)已實現(xiàn)模塊化、成熟化和標(biāo)準(zhǔn)化。但AC/DC的模塊化,因其自身的特性使得在模塊化的進(jìn)程中,遇到較為復(fù)雜的技術(shù)和工藝制造問題。
3.1 DC/DC變換
DC/DC變換是將固定的直流電壓變換成可變的直流電壓,也稱為直流斬波。斬波器的工作方式有:脈寬調(diào)制方式(Ts不變,改變ton)和頻率調(diào)制方式(ton不變,改變Ts)兩種。前者較為通用,后者容易產(chǎn)生干擾。其具體電路有Buck電路(降壓斬波器,其輸出平均小于輸入電壓,極性相同)、Boost電路(升壓斬波器,其輸出平均電壓大于輸入電壓,極性相同)、Buck—Boost電路(降壓或升壓斬波器,電感傳輸方式。其輸出平均電壓大于或小于輸出電壓,極性相反)和Cuk電路(降壓或升壓斬波器,電容傳輸方式。其輸出平均電壓大于或小于輸入電壓,極性相反)四種。
當(dāng)今世界軟開關(guān)技術(shù)使得DC/DC變換器發(fā)生了質(zhì)得變化和飛躍。美國VICOR公司設(shè)計制造得多種ECI軟開關(guān)DC/DC變換器,最大輸出功率有300W、600W、800W等,相應(yīng)得功率密度為(6.2、10、17)W/cm3,效率為(80—90)%。日本NemicLambda公司最新推出得一種采用軟開關(guān)技術(shù)得高頻開關(guān)電源模塊RM系列,其開關(guān)頻率為200—300KHz,功率密度已達(dá)27W/cm3,采用同步整流器(MOS-FET代替肖特基二極管),使整個電路效率提高到90%。
3.2 AC/DC變換器
AC/DC變換器是將交流電壓變換成直流電壓,其功率流向可以是雙向的功率六由電源流向負(fù)載的稱為“整流”,功率六有負(fù)載返向電源的稱為“有源逆變”。AC/DC變換器輸入為50/60Hz的交流電,因必須經(jīng)整流、濾波,因此體積相對較大的濾波電容器是必不可少的,同時因遇到安全標(biāo)準(zhǔn),(如UL、CCE等)及EMC指令的限制(如IEC、FCC、CSA),交流輸入側(cè)必須加EMC濾波及使用符合安全標(biāo)準(zhǔn)的元件,這樣就限制AC/DC電源體積的小型化,另外,由于內(nèi)部的高頻、高壓、大電流開關(guān)動作,使得解決EMC電磁兼容問題難度加大,也就對內(nèi)部高密度安裝電路設(shè)計提出了很高的要求,由于同樣的原因,高電壓、大電流開關(guān)使得電源工作效率達(dá)到一定的滿意程度。
AC/DC變換按電路的接線方式右分為,半波電路、全波電路。按電源相數(shù)可分為,單相。按電路工袋子和象限又可分為一象限、二象限、三象限、四象限。轉(zhuǎn)貼于 4.開關(guān)式穩(wěn)壓電源的工作原理
4.1開關(guān)式穩(wěn)壓電源的基本工作原理
開關(guān)式穩(wěn)壓電源接控制方式分為調(diào)寬式和調(diào)頻式兩種。調(diào)寬式開關(guān)穩(wěn)壓電源在實際開發(fā)和應(yīng)用的中使用得較多,因此,就以調(diào)寬式開關(guān)穩(wěn)壓電源為例說明其基本工作原理:調(diào)寬式開關(guān)穩(wěn)壓電源的基本原理可參見圖1。對于單極性矩形脈沖來說,其直流平均電壓Uo取決于矩形脈沖的寬度,脈沖越寬,其直流平均電壓值就越高。直流平均電壓U當(dāng)Um與T不變時,直流平均電壓Uo與脈沖寬度T1成正比。這樣,只要我們設(shè)法使脈沖寬度隨穩(wěn)壓電源輸出電壓的增高而變窄,即可達(dá)到穩(wěn)定電壓的目的。
Um為矩形脈沖最大電壓值;T為矩形脈沖周期;T1為矩形脈沖寬度。
4.2 開關(guān)式穩(wěn)壓電源的原理電路
開關(guān)式穩(wěn)壓電源的基本電路框圖如圖2所示。交流電壓經(jīng)整流、濾波電路整流濾波后,輸出一個含有一定脈動成份的直流電壓,再經(jīng)高頻變換器被轉(zhuǎn)換成所需電壓值的方波,最后再經(jīng)整流濾波變?yōu)樗枰闹绷麟妷骸?/p>
控制電路由取樣器、比較器、振蕩器、脈寬調(diào)制及基準(zhǔn)電壓等電路組成(目前已集成化)。主要起控制高頻開關(guān)元件的開關(guān)時間比,即脈沖寬度的占空比,以達(dá)到穩(wěn)定輸出電壓的目的。開關(guān)電源的典型電路主要有單端反激式開關(guān)電源、單端正激式開關(guān)電源、自激式開關(guān)穩(wěn)壓電源、推挽式開關(guān)電源、降壓式開關(guān)電源、升壓式開關(guān)電源、反轉(zhuǎn)式開關(guān)電源。
5 開關(guān)電源在醫(yī)學(xué)儀器中的應(yīng)用
近二十年來,開關(guān)電源已廣泛應(yīng)用在心電圖機(jī)、超聲診斷儀和CT等醫(yī)療儀器設(shè)備之中。本文以美國GE公司專門為CT機(jī)設(shè)計的CT MAX640型脈寬調(diào)制開關(guān)穩(wěn)壓電源為例加以介紹。該電源由軟啟動控制電路、220/110V自動識別電路、晶體管開關(guān)電路(輔助電源)、脈寬調(diào)制(PWM)、驅(qū)動電路等部分組成。
5.1軟啟動控制電路
由TR104、TRC101、THF101、R113、R114、R116等組成。開機(jī)瞬間TRC101截止,電流流過THF101、限流電阻R113、R114,輔助開關(guān)電源開始接入直流300V時,光電耦合器PC101導(dǎo)通。同時,振蕩波形經(jīng)T101耦合,D106整流、C128濾波,輸出一直流電壓,TR104飽和導(dǎo)通。當(dāng)R116上的直流壓降達(dá)到可控硅TEC101觸發(fā)電壓時而導(dǎo)通,此時THF101、R113、R114失去作用,從而實現(xiàn)了啟動時減少整流橋和濾波電容沖擊電流的作用,即軟啟動
5.2 自動識別電路
由IC101、TRC102、TR101、SS102、R101、R112等組成。當(dāng)輸入220V交流電時,TRC102截止,220V經(jīng)硅橋SS101整流,濾波后輸出A、B兩組電壓,TR103集電極輸出300V直流電壓;當(dāng)輸入110V交流電壓時,IC1013腳的輸出電壓使可控硅TRC102導(dǎo)通,K點與硅橋的110V輸入端相連接,再經(jīng)倍壓整流電路(SS101、C109-112、R120、R121)輸出300V直流電壓。為輔助開關(guān)電源及脈寬調(diào)制驅(qū)動電路供電。
5.3 晶體管開關(guān)電路又稱輔助電源
由TR103、T101、TR102等組成。由T1015、6腳耦合過來的交變信號,經(jīng)D108整流、C127濾波后輸出C、X正壓,為脈寬調(diào)制電路、風(fēng)扇檢測電路、+5V誤差放大負(fù)反饋控制電路供電。
篇7
【關(guān)鍵詞】主整電源;低壓;泄放電路
DX系列發(fā)射機(jī)的進(jìn)電方式為十二相全波整流三相四線制, 其工作由交流接觸器K1和K2負(fù)責(zé)控制,文波為600HZ,采用這種設(shè)計方法既簡化了濾波電路的設(shè)計又提高了濾波效果。主整電源系統(tǒng)和低壓系統(tǒng)兩部分構(gòu)成了DX系列發(fā)射機(jī)的電源系統(tǒng)。為功放系統(tǒng)(包括RF推動和功放末級模塊)供電的是主整高壓+230V和+115V。低壓電源包括兩部分,一部分負(fù)責(zé)控制和檢測電路系統(tǒng)的供電,電壓為±8V、±22V;另一部分為非穩(wěn)壓+60V和+30V,為緩沖和前級及功放小臺階部分提供功放電壓。
一、主整電源
DX系列發(fā)射機(jī)的主整高壓電源系統(tǒng)由主電路部分和輔助電路部分組成。由三角形和星形組成的進(jìn)線電路經(jīng)變壓、整流和濾波后輸出的電壓為功放系統(tǒng)提供電源。因功率合成采用多個RF模塊合成的方式,功放管采用晶體管,所以大電流、低電壓是主整電源的主要特點。和傳統(tǒng)電子管主整電壓超過幾千伏相比,DX系列發(fā)射機(jī)的主整電壓大大的降低了,因此絕緣導(dǎo)致的故障率減少了,但電流增大了,隨著功率等級的上升,電流從幾十安培至數(shù)百安培不等,因此對工藝提出新的要求。
主電路提供高壓整流、濾波及分配功能。這部分電路主要把主變壓器次級送出的交流電源整流成+230V和+115V的高壓直流電源,經(jīng)過熔斷器組件電路后分配給各功率合成母板和驅(qū)動電源調(diào)整板,為功放模塊提供功放電源。主整變壓器T1是一個三相交流電源變壓器,一般在沒有特殊要求的情況下,初級設(shè)有±5%抽頭而允許輸入電壓范圍為交流361VAC至399VAC變化,兩組次級線圈提供相同的交流輸出電壓。變壓器T1的輸出分別送到兩個橋式整流器上,兩個整流器組成一個12相全波整流電路,其直流輸出為+230V和+115V,紋波頻率是電源頻率的12倍(600Hz)。
對主整電源電壓進(jìn)行采樣的取樣電路是輔助電路的一部分,功放電壓、電流、推動電源調(diào)整及模擬輸入電路都從主整電源進(jìn)行電壓采樣。電壓取樣信號經(jīng)調(diào)整后送至控制系統(tǒng)用作功放電壓+230V的指示信號。整流橋組的負(fù)端接電流互感器,互感器取樣信號輸入到控制電路上經(jīng)處理后作為電流指示信號。送至推動電源調(diào)整電路的電源采樣信號用作穩(wěn)定外界電壓變化的補(bǔ)償信號。模擬輸入板采集到的采樣電壓用作補(bǔ)償+230V功放電壓,由于外界電壓或調(diào)制信號瞬間發(fā)生較大的變化時將導(dǎo)致主整+230V發(fā)生變化,該補(bǔ)償可有效的改善主整電壓的變化。
提供安全保護(hù)功能的泄放電路是主整電源系統(tǒng)的另一部分,其控制信號由兩個交流接觸器K1和K2的常閉輔助觸點外接的電子開關(guān)提供,不同廠家采用不同形式的電子開關(guān),但都需要外接大功率泄放電阻。在發(fā)射機(jī)上高壓時,K1被斷電,K2被加電,K1的附屬觸點關(guān)閉,K2附屬觸點開啟,使電阻處于開路狀態(tài)。當(dāng)K2斷電時,K2的附屬觸點關(guān)閉,將殘余的電壓(+230V)加到電阻上,這個電壓通過電阻接地快速放電,放電回路同時也給+115V快速放電。經(jīng)熔斷器的+230V送至 RF功放前需要電容濾波,每個濾波電容兩端也接有放電電阻,當(dāng)一個熔斷器熔斷開路時,還將有一個與之并聯(lián)的二極管和電阻給電容提供放電回路。
二、低壓電源
低電源包括±8V、±22V、+30V和+60V的非穩(wěn)壓電源。其中±8V、±22V電壓在各個獨立的電路中被穩(wěn)壓為±5V和±15V電源。
低壓變壓器T2的初級有三組抽頭供調(diào)節(jié),即198V、220V和242V,用來適應(yīng)外部電源的各種輸入情況。T2的次級有兩組線包,一組線包為7.8VAC和17.6VAC,另一組線包為24VAC。線包7.8VAC和17.6VAC要經(jīng)整流二極管和濾波電容濾波,然后產(chǎn)生的±8V和±22V的直流電壓被送到低壓電源分配電路。次級線包24VAC,經(jīng)整流二極管和濾波電容濾波后,產(chǎn)生+30V和+60V的直流電壓,被送到各部分電路中。
送至各控制與檢測電路的低壓均需要穩(wěn)壓和濾波后才能作為電源使用。每個部分采用的穩(wěn)壓電路模式都是一樣的,都需要先經(jīng)過熔斷保險管進(jìn)行輸入電路保護(hù),根據(jù)實際需要電壓采用相應(yīng)穩(wěn)壓塊穩(wěn)壓,或電壓調(diào)節(jié)器集成電路UC3834(B-電壓)組成,穩(wěn)壓器件輸入輸出均接有濾波電容,濾波電容為濾除高頻的獨石電容和濾除低頻的電解電容,穩(wěn)壓輸出端一般還要接入起保護(hù)功能的穩(wěn)壓二極管。DX系列發(fā)射機(jī)的許多功能電路采用檢測電源電壓的方法來判斷該電路是否工作正常。
控制板電路接入非穩(wěn)壓的±8V、±22V,一路經(jīng)分壓電路處理后用作低壓電源的顯示信號。另一路則經(jīng)穩(wěn)壓塊穩(wěn)壓后作為控制板電源?!?V經(jīng)穩(wěn)壓后輸出的±5V,作為控制板上部分邏輯電路的電源,還有一路+5V被送至頻率指示電路作為電源?!?2V經(jīng)穩(wěn)壓塊后輸出±15V作為檢測電路電源和部分邏輯電路電源。+15V和+5V作故障檢測信號時被送至控制邏輯電路對模數(shù)電路進(jìn)行數(shù)據(jù)清零,封鎖數(shù)據(jù)轉(zhuǎn)換,禁止功率輸出。
激勵器電源由非穩(wěn)壓的+22V提供,穩(wěn)壓塊輸出+15V電壓作為壓控振蕩器和鑒相器的電源。同時穩(wěn)壓后的+15V經(jīng)9V、12V和5V穩(wěn)壓塊后,分別輸出+9V、+12V和+5V作為激勵器集成電路和溫補(bǔ)晶體振蕩器的電源。
音頻系統(tǒng)的音頻處理器的工作電源為±22V非穩(wěn)壓電源,經(jīng)穩(wěn)壓后成±15V的穩(wěn)壓電源,該穩(wěn)壓電源±15V還作為給調(diào)幅度指示電路的電源。模擬輸入電路的電源電壓是±22V,穩(wěn)壓輸出±15V和+5V,作為集成電路的電源,同時也被用作故障采集信號,送入控制板電路作模擬輸入電路故障指示。模數(shù)轉(zhuǎn)換電路上有三個電源穩(wěn)壓器,穩(wěn)壓輸出±15V和+5V作為集成電路的電源,它們的輸出各自接一個電壓比較器,比較器的輸出為低時指示為故障,將“故障”邏輯電平輸出到控制板上做故障保護(hù)信號。
直流穩(wěn)壓電源電壓為非穩(wěn)壓±8V。B+電源采用LM338三端可調(diào)穩(wěn)壓器,將+8V調(diào)整成+5V(實際電壓+5.3V)。采用電壓調(diào)整器UC3834和晶體管將非穩(wěn)壓的-8V調(diào)整為隨音頻調(diào)制信號變化的B-電源,UC3834外接晶體管用來增加電流驅(qū)動能力,為調(diào)制編碼電路提供了驅(qū)動電源。它的內(nèi)部有參考電壓、內(nèi)部故障監(jiān)測及“故障報警”電路,故障監(jiān)測電路在欠壓和過壓條件下給出檢測信號,內(nèi)部故障邏輯電路啟動后故障報警信號被送至控制板。
來自低壓電源非穩(wěn)壓的+30V分成兩路信號,一路經(jīng)限流電阻為緩沖放大板提供電源,另一路通過交流接觸器K2的副節(jié)點后用作二進(jìn)制功率的小臺階B11和B12的功放電源。非穩(wěn)壓的+60V也分成兩路信號,一路限流后也作為緩沖放大器的電源,一路供給前置推動級作為RF推動電壓。
篇8
關(guān)鍵字: 直流電源; 低紋波; 雙電池; 通斷原則
中圖分類號: TN86?34; TP303+.3 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2016)14?0150?04
Design and implementation of low?ripple dual battery DC regulated power supply
LI Jie, CHENG Weibin, FENG Du, MAN Rongjuan
(School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710065, China)
Abstract: In order to realize the low?ripple output of the power supply, a low?ripple dual battery DC power supply was designed with the ripple control method, which can switch from the low power state to full power state automatically. The ripple characteristic test for the power supply was performed. The original signal is transmitted to the main control circuit through the voltage acquisition circuit, and then the main control circuit is used to control the charging and supplying power selection circuit according to the on?off principle of the relay switch and collected voltage signal. The power supply battery can realize +5V voltage output in one channel and adjustable voltage output in two channels through the linear voltage adjustment circuit. The low ripple DC voltage regulator output from charging state to supplying power state was implemented. A coaxial?cable testing device was adopted in power supply ripple test. The test data shows that the low ripple DC regulated power supply has good running condition and greater advantage in ripple control in combination with other DC power supply, and its output voltage is stable.
Keywords: DC power supply; low ripple; dual battery; on?off principle
0 引 言
提高參數(shù)測量精確度的重要方法是降低各類誤差,其中直流電源紋波是產(chǎn)生誤差的主要根源之一。二極管工頻整流后直流電源有較大的工頻紋波,需要較大容量濾波器件;開關(guān)電源采用高頻工作,濾波器件體積和容量降低[1],但存在高頻紋波,雖然通過增加電路濾波器件可降低紋波,有時可達(dá)幾毫伏,但仍達(dá)不到高精度測量的要求[2]。
本身沒有紋波的直流電池供電是一種較好的選擇,可以得到高質(zhì)量的直流電源供應(yīng),但單一電池的容量有限,需要充電。有些電源采用交流供電、電池備用的方式,可保證交流失電后一段時間內(nèi)的供電,交流供電時的紋波仍然存在。
為了克服了現(xiàn)有工頻整流穩(wěn)壓電源和開關(guān)電源紋波控制技術(shù)的不足,以及電池容量有限不能持續(xù)低紋波輸出的問題,本文設(shè)計了一種基于STC89C54的低紋波雙電池直流穩(wěn)壓電源。
1 硬件電路原理
系統(tǒng)的硬件主要包括控制主電路、電壓采集電路、充電選擇電路、供電選擇電路、線性電壓調(diào)整電路、可充電電池以及電源適配器,電路結(jié)構(gòu)如圖1所示。
控制主電路包括單片機(jī)STC89C54、A/D轉(zhuǎn)換器PCF8591和LCD12864。PCF8591把模擬型的電壓信號轉(zhuǎn)換成數(shù)字信號,供單片機(jī)進(jìn)行信號處理;單片機(jī)根據(jù)當(dāng)前電池的充、供、欠、滿4種狀態(tài)和繼電器通斷原則,實現(xiàn)對雙電池充電和供電的最優(yōu)控制;液晶顯示器顯示各個電池的充、供、欠、滿4種狀態(tài),并且實時顯示各個電池當(dāng)前電壓以及充電電池的充電電流,為使用者提供便捷。
電壓采集電路由分壓電阻、運(yùn)算放大器和充電電流采樣電阻組成,電池端電壓首先通過分壓電阻分壓,再由運(yùn)算放大器調(diào)整到可采集的電壓范圍,最后傳輸?shù)絇CF8591進(jìn)行A/D轉(zhuǎn)換,而充電電流采樣電阻的作用是把充電電流信號轉(zhuǎn)換成電壓信號。
充電選擇電路和供電選擇電路分別是由兩個繼電器開關(guān)和兩個二極管組成[3],控制主電路遵循通斷原則控制繼電器閉合與斷開,在保障持續(xù)供電的前提下,盡可能使穩(wěn)壓電源低紋波輸出。線性電壓調(diào)整電路采用線性穩(wěn)壓模塊、濾波電路和緩沖電路來穩(wěn)定輸出和降低開關(guān)調(diào)整產(chǎn)生的諧波,以此實現(xiàn)穩(wěn)定的低紋波輸出??沙潆婋姵剡x擇12 V電池,并配備相應(yīng)的電源適配器。雙電池低紋波直流穩(wěn)壓電源供電原理圖如圖2所示。
2 硬件電路設(shè)計
2.1 控制主電路設(shè)計
控制主電路是以自帶看門狗的單片機(jī)STC89C54為控制核心,A/D轉(zhuǎn)換器PCF8591輸出的數(shù)字信號和充供繼電器開關(guān)的通斷情況作為單片機(jī)的輸入信號,LCD12864為顯示輸出,單片機(jī)遵循以下幾個通斷原則控制雙電池的充供電:
(1) 該電池充電開關(guān)需要閉合時,必須同時滿足:
① 該電池處于未充滿狀態(tài);
② 該電池的供電開關(guān)處于斷開狀態(tài)(即該電池不供電);
③ 另一電池的充電開關(guān)處于斷開狀態(tài)(即兩個電池不同時充電)。
(2) 該電池充電開關(guān)需要斷開時,只需滿足其一即可:
① 該電池處于充滿狀態(tài);
②該電池的供電開關(guān)即將閉合(即需要該電池供電);
③另一電池的充電開關(guān)即將閉合(即兩個電池不同時充電)。
(3) 該電池供電開關(guān)需要閉合時,必須同時滿足:
① 該電池處于不欠電狀態(tài);
② 該電池的充電開關(guān)處于斷開狀態(tài)(即該電池不充電);
③ 另一電池的供電開關(guān)即將斷開(即兩個電池不同時供電,但為了保證后級供電,需要該電池供電開關(guān)閉合后,另一電池供電開關(guān)才能斷開)。
(4) 該電池供電開關(guān)需要斷開時,只需滿足其一即可:
① 該電池處于欠電狀態(tài);
② 該電池的充電開關(guān)即將閉合(即該電池需要充電);
③ 另一電池的供電開關(guān)已經(jīng)閉合(為保證后級供電,另一電池供電開關(guān)閉合后,該電池供電開關(guān)才能斷開)。
如圖2所示,以上四條通斷原則邏輯關(guān)系可總結(jié)為:
式中:B1Q,B1M分別代表B1電池欠電和B1電池滿電。
以通斷原則為根本控制思想,完成軟件程序的編寫和調(diào)試,是實現(xiàn)低紋波、穩(wěn)定、持續(xù)供電的核心思路。
2.2 電壓采集電路設(shè)計
由于電池充電時,采集到的電池端電壓是充電器的端電壓,不能只用電池端電壓值來判斷電池是否滿電,所以需要電池端電壓信號采集電路和充電電流信號采集電路配合使用[4?5]。
電池端電壓信號采集電路又可分為正極性電池電壓信號采集和負(fù)性電池電壓信號采集,由于所選擇的串行A/D轉(zhuǎn)換芯片PCF8591可識別0~5 V電壓信號[6];故正極性電池電壓信號需通過一組分壓電阻分壓為0~5 V,再接電壓跟隨器即可采集成功;而負(fù)極性電池電壓信號由于負(fù)電壓的特殊性,需先通過分壓電阻分壓為反相運(yùn)算放大器可識別的電壓范圍內(nèi),然后選擇合適的放大倍數(shù),反向放大到合適的電壓區(qū)間[7]。負(fù)極性電池端電壓信號采集電路如圖3所示。
充電電流信號采集電路也可分為正極性充電電流信號采集和負(fù)性充電電流信號采集。采集到信號實際上是電壓信號,但是考慮到功耗問題,所選用的采樣電阻十分小,故采集到的電壓信號十分微弱,所以分別需要通過同相比例放大器和反向比例放大器來放大采集到的微弱電壓信號,并且在放大器輸入端加入了RC濾波電路來抑制干擾。
這樣就使得所有電壓信號滿足PCF8591芯片的采集范圍,為后級控制主電路的信號輸出提供參考。正極性充電電流信號采集電路如圖3所示。
2.3 其他電路設(shè)計
除了控制主電路和電壓采集電路,該系統(tǒng)還包括充電選擇電路、供電選擇電路、線性電壓調(diào)整電路、可充電電池和電源適配器。
這幾部分電路中,充電選擇電路和供點選擇電路分別是由兩個5 V繼電器和兩個二極管組成,由單片機(jī)根據(jù)通斷原則依次輸出高低電平來控制各個繼電器的導(dǎo)通和斷開,二極管的單向?qū)ㄐ?,保證了充電電流或者供電電流的單向性;線性電壓調(diào)整電路通過三塊線性穩(wěn)壓模塊分別可實現(xiàn)一路5 V和兩路可調(diào)電壓輸出,穩(wěn)壓模塊前級輸入和后級輸出分別并聯(lián)0.1 μF普通電容和100 μF電解電容來對輸入/輸出電流濾波和緩沖,達(dá)到穩(wěn)定輸出和降低開關(guān)調(diào)整諧波的目的,以此實現(xiàn)穩(wěn)定的低紋波輸出。
線性穩(wěn)壓模塊的性能要求輸入電壓比輸出電壓高2~3 V,所以本設(shè)計選擇無紋波的12 V可充電電池為后級電路提供低紋波直流電壓,前級交流充電選擇與之匹配的電源適配器提供充電電流。
3 軟件系統(tǒng)設(shè)計
低紋波雙電池穩(wěn)壓電源開始上電,程序初始化完成,接著將采集到的電壓信號A/D轉(zhuǎn)換并顯示于LCD12864,然后控制主電路判斷雙電池是否均欠電,若均欠電,則充滿一個電池,再依次執(zhí)行A/D轉(zhuǎn)換子程序、電池狀態(tài)掃描子程序、供電子程序、充電子程序以及液晶顯示子程序;若至少一個電池不欠電,則直接執(zhí)行后級子程序。設(shè)計流程圖如圖4所示。
4 電源紋波測試分析
電源制作并調(diào)試完畢后,采用同軸電纜測試裝置來對電源進(jìn)行紋波測試,在被測電源的輸出端接RC電路后經(jīng)輸入同軸電纜后接示波器的AC輸入端,具體連接方法如圖5所示[8]。
示波器選用RIGOL公司的DS1204B,在示波器的設(shè)置方面,應(yīng)注意盡量使用示波器最靈敏的量程檔,打開AC耦合和帶寬限制功能,表筆選用同軸電纜,并設(shè)置衰減比為1倍[9?10]。
根據(jù)以上方法,分別對普通直流電源(興隆NS?3)、可編程直流電源(RIGOL DP832)和本設(shè)計的低紋波直流電源進(jìn)行紋波對比,三種電源輸出電壓均為5 V,測量結(jié)果如圖6所示。
由圖6可知,普通直流電源輸出紋波為5.36 mV,可編程直流電源輸出紋波為2.88 mV,低紋波直流電源輸出紋波為400 μV。
紋波對比試驗結(jié)果可知,同環(huán)境、同電流以及同負(fù)載情況下,本文設(shè)計的低紋波直流電源輸出紋波電壓低于500 μV,在輸出紋波方面優(yōu)于其他直流電源。
5 結(jié) 語
設(shè)計的低紋波直流電源可以準(zhǔn)確識別電池電壓和充電電流,并能遵循開關(guān)通斷原則實時控制繼電器,控制狀況良好。輸出紋波對比試驗表明:本設(shè)計在紋波控制方面具有較大優(yōu)勢,是實現(xiàn)高精度參數(shù)測量的有效途徑。
目前,該低紋波雙電池直流穩(wěn)壓電源已成功應(yīng)用到旋轉(zhuǎn)導(dǎo)向鉆井測斜儀中,電源工作穩(wěn)定可靠,參數(shù)測量精確度明顯提高。
注:本文通訊作者為程為彬。
參考文獻(xiàn)
[1] 賈洪成.一種新型的直流穩(wěn)壓[J].電氣時代,2000(4):22?23.
[2] 劉金濤,田書林,付在明.一種高精度低紋波的DC?DC電源設(shè)計[J].中國測試,2010,36(6):62?64.
[3] 陳霖,王麗文,錢渭,等.繼電器的選擇和使用[J].機(jī)電元件,2011,31(6):43?49.
[4] 喬波強(qiáng),侯振義,王佑民.蓄電池剩余容量預(yù)測技術(shù)現(xiàn)狀及發(fā)展[J].電源世界,2012(2):21?26.
[5] JIANG Jiuchun, WEN Feng, WEN Jiapeng, et al. Battery management system used in electric vehicles [J]. Power electronics, 2011, 45(12): 2?10.
[6] 周劍利,郭建波,崔濤.具有I2C總線接口的A/D芯片PCF8591及其應(yīng)用[J].微計算機(jī)信息,2005,21(7):150?151.
[7] 崔張坤,梁英,龍澤,等.鋰電池組單體電壓采集電路的設(shè)計[J].沈陽理工大學(xué)學(xué)報,2011,30(3):29?33.
[8] 程惠,任勇峰,王強(qiáng).電源紋波的測量及抑制[J].電源技術(shù),2012,36(12):1899?1900.
[9] 高增鑫.基于RIGOL數(shù)字示波器的電源紋波自動測量系統(tǒng)[J].世界產(chǎn)品與技術(shù),2008(10):87?88.
篇9
關(guān)鍵詞:開關(guān)電源 原理 發(fā)展趨勢 控制方式
目前,電力系統(tǒng)應(yīng)用的電源主要可以分為兩部分,一是直流穩(wěn)壓電源和開關(guān)電源兩種,從二者的性能來看,開關(guān)電源能量消耗低,產(chǎn)生的效率是普通線性穩(wěn)壓電源的1倍,因此,其普及度較高,是電子計算機(jī)、通訊、家電行業(yè)普遍采用的一種措施,本文就對開關(guān)電源的原理以及其發(fā)展趨勢進(jìn)行分析,促進(jìn)實際工作的開展。
1、開關(guān)電源的發(fā)展
開關(guān)電源被業(yè)界譽(yù)為高效節(jié)能型電源,其是穩(wěn)壓電源的發(fā)展方向,目前已經(jīng)成為穩(wěn)壓電源的代表產(chǎn)品,從其發(fā)展歷程來看,其主要經(jīng)歷四個階段,最早的分離元件組成的開關(guān)電源,相對而言,其頻率低,效率差,電路復(fù)雜,難以調(diào)適,但其是開關(guān)電源發(fā)展的重要階段;到上世紀(jì)70年代,脈寬調(diào)制器集成電路問世,提升了控制電路的工作效率;80年代單片開關(guān)穩(wěn)壓器出現(xiàn),效率大大提升,但仍屬于DC/DC電源變換器,直到多種類型的單片開關(guān)電源集成電路,實現(xiàn)了AC/DC電源變化器的集成。
2、高頻開關(guān)電源電路原理分析
2.1 組成
高頻開關(guān)電源主要由主電路和控制電路、檢測電路、輔助電路組成,每一個環(huán)節(jié)擔(dān)負(fù)著不同的責(zé)任。
2.1.1 主電路
其是從交流電輸入,直流電輸出,其中主要保留輸入的濾液器,主要用于電網(wǎng)雜志的過來,同時對本機(jī)產(chǎn)生雜波也有一定的阻礙作用;電網(wǎng)交流電源直接整流為平滑的直流電,促進(jìn)下級變換工作的開展;作為高頻開關(guān)的核心組成,逆變是將整流后的直流電轉(zhuǎn)為高頻交流電,相對而言,頻率越高,體積、重量與輸出功率的比值越小;根據(jù)負(fù)載的需要,輸出整流與濾液可以提供更加可靠的直流電源。
2.1.2 控制電路
所謂的控制電路就是從輸出端取樣,與固有的標(biāo)準(zhǔn)進(jìn)行比較,實現(xiàn)逆變器的控制,改變其頻率或者脈寬,實現(xiàn)輸出穩(wěn)定,同時,根據(jù)測試電路提供的數(shù)據(jù),經(jīng)過保護(hù)電路的鑒別,提供控制電路對整機(jī)進(jìn)行各種保護(hù)措施。
2.1.3 檢測電路
主要是為了保護(hù)電路運(yùn)行中的參數(shù),同時也可以提供各種顯示儀表的數(shù)據(jù)。
2.1.4 輔助電源
為了滿足單一線路對電源的不同需求。
2.2 開關(guān)控制的穩(wěn)壓原理
以一定的時間范圍內(nèi)重復(fù)的連接與斷開,在接通時,輸入電源通過開關(guān)與濾波電路提供負(fù)載,在開關(guān)接通過程中,電源向負(fù)載提供能量,在斷開過程中,能量停止供給。由此我們發(fā)現(xiàn),輸入電源向負(fù)載提供能量是與開關(guān)的狀態(tài)相關(guān)的,而要想負(fù)載得到持續(xù)的能量,就需要穩(wěn)壓電源自身有儲能能力,在斷開時釋放儲存的電能,保證正常運(yùn)行,隨著科學(xué)技術(shù)的發(fā)展,這一研究正在逐步成熟化,續(xù)流二極管的出現(xiàn)剛好驗證了這一點。
3、開關(guān)電源的控制方式
目前,較為常見的開關(guān)電源控制方式主要可以分為以下幾種:
3.1 脈沖寬度調(diào)制
這一控制方式周期保持不變,主要通過脈沖寬度的改變來實現(xiàn)占空比。
3.2 脈沖頻率調(diào)制
與上一控制方式不同,這一控制措施的寬度保持不變,主要通過改變開關(guān)的工作頻率來改變占空比,目前其應(yīng)用較為普遍。
3.3 混合調(diào)制
在一些重大場合,一種方式無法滿足其需求,必須采用以上兩種方式才能實現(xiàn)其控制的目的,提高其控制效果。
4、開關(guān)電源未來的發(fā)展趨勢
從上文的分析中我們已經(jīng)認(rèn)識到開關(guān)電源不斷地創(chuàng)新,不斷地發(fā)展,為電力系統(tǒng)的運(yùn)行做出了不可替代的貢獻(xiàn),近年來,隨著科學(xué)技術(shù)的不斷發(fā)展,電力研究的逐漸深入,計算機(jī)技術(shù)的應(yīng)用都在一定程度上提升了電源開關(guān)的工作效率。在1955年美國羅耶(GH.Roger)發(fā)明的自激振蕩推挽晶體管單變壓器直流變換器,是實現(xiàn)高頻轉(zhuǎn)換控制電路的開端,到了1957年,美國查賽(Jen Sen)發(fā)明了自激式推挽雙變壓器,1964年美國科學(xué)家們提出取消工頻變壓器的串聯(lián)開關(guān)電源的設(shè)想,這對電源向體積和重量的下降獲得了一條根本的途徑。到1969年迎來了開關(guān)電源革命的一年,大功率晶體管的耐壓程度獲得了很大的提高,二極管的反向恢復(fù)時間大大縮短,25千赫的開關(guān)電源終于問世了,改變了開關(guān)電源的歷史。
至今為止,開關(guān)電源以其小巧實用的優(yōu)勢被廣泛的應(yīng)用于以電子計算機(jī)為主導(dǎo)的多種電子設(shè)備中,是信息化社會發(fā)展的重要元件,從市場的組成來看,開關(guān)電源種類各異,樣式多種,都以實用為主,但是從發(fā)展的角度來看,其頻率仍有待完善。要想改變開關(guān)的頻率就要從減少損耗的角度出發(fā),減少能耗就要提高高速開關(guān)元件的質(zhì)量,一旦開關(guān)速度提高,會受到電路中分布的電感和電容中的電荷影響產(chǎn)生噪聲,影響周圍電子設(shè)備的質(zhì)量,大大降低電源自身的可靠性。為了阻止開關(guān)所產(chǎn)生的電壓浪涌,可以采用R-C或L-C緩沖器,而對由二極管存儲電荷所致的電流浪涌可采用非晶態(tài)等磁芯制成的磁緩沖器。不過,對1MHz以上的高頻,要采用諧振電路,以使開關(guān)上的電壓或通過開關(guān)的電流呈正弦波,這樣既可減少開關(guān)損耗,同時也可控制浪涌的發(fā)生。這種開關(guān)方式稱為諧振式開關(guān)。目前對這種開關(guān)電源的研究很活躍,因為采用這種方式不需要大幅度提高開關(guān)速度就可以在理論上把開關(guān)損耗降到零,而且噪聲也小,可望成為開關(guān)電源高頻化的一種主要方式。當(dāng)前,世界上許多國家都在致力于數(shù)兆Hz的變換器的實用化研究。
目前,中小功率的開關(guān)電源被廣泛的應(yīng)用于家電中,成為開關(guān)電源的另一發(fā)展方向,單片開關(guān)電源,效率顯著提升,被迅速的發(fā)展與應(yīng)用,滿足了人們對高性價比電源的追求目標(biāo)。
參考文獻(xiàn)
[1]郭宇恒.固定關(guān)斷時間電流檢測型降壓電路設(shè)計[D].電子科技大學(xué),2011.
篇10
關(guān)鍵詞:智能型礦用本安電源;STM32F103;CAN總線;電路設(shè)計;煤炭開采 文獻(xiàn)標(biāo)識碼:A
中圖分類號:TD611 文章編號:1009-2374(2017)05-0222-03 DOI:10.13535/ki.11-4406/n.2017.05.108
隨著煤礦現(xiàn)代化程度的不斷提高,對煤礦供電的可靠性、安全性提出越來越高的要求。本安電源是煤礦井下的重要電氣設(shè)備,它的安全運(yùn)行是現(xiàn)代化煤礦中其他礦井下各類電氣設(shè)備高效率、高質(zhì)量運(yùn)轉(zhuǎn)的保證。但是由于礦井下特殊的工作環(huán)境和其他原因,目前,煤礦井下本安電源的管理還存在若干問題:首先,礦井下本安電源種類繁多、獨立性強(qiáng),若不在現(xiàn)場很難檢測它們的工作狀態(tài);其次,這些電源的功能參數(shù)各不相同,電源的維護(hù)管理也不統(tǒng)一。如果礦井下現(xiàn)場設(shè)備的供電情況不能在第一時間獲取,一旦發(fā)生電源故障,不僅影響設(shè)備運(yùn)行,還可能導(dǎo)致重大事故的發(fā)生。
近年來,數(shù)字礦山的提出使得本安電源已經(jīng)由獨立的外部設(shè)備產(chǎn)品發(fā)展成為整個通信系統(tǒng)不可分割的一部分。這不僅要求本安電源具備傳統(tǒng)的供電、防爆等功能,而且應(yīng)該通過CAN通信接口、以太網(wǎng)通信接口或458總線等具備智能通訊的能力,以實現(xiàn)本安電源可方便快捷的接入數(shù)字通信系統(tǒng)中?;诖耍疚奶岢隽艘环N智能型礦用隔爆兼本安型直流穩(wěn)壓電源的設(shè)計,能夠解決當(dāng)前電源獨立、管理不規(guī)范、供電情況不明以及電源故障情況等,實現(xiàn)本安電源的網(wǎng)絡(luò)化、智能化。
1 智能型本安電源結(jié)構(gòu)
本安型電路是指在規(guī)定的試驗條件下正常工作或在規(guī)定的故障狀態(tài)下產(chǎn)生的電火花和熱效應(yīng)均不能點燃規(guī)定的爆炸性氣體混合物的電路。智能本安型電源的設(shè)計目的是保證操作者的人身安全、防止出現(xiàn)事故后電源故障、電源不正常時能夠自我修復(fù)或及時斷電報警、通過網(wǎng)絡(luò)控制與監(jiān)測電源工作情況等。因此,智能本安電源的設(shè)計采用降壓、整流、穩(wěn)壓、過流過壓保護(hù)、充電及快速切斷模塊、CAN通信接口模塊、微控制器模塊。本文設(shè)計的本安電源原理框圖如圖1所示。
交流電通過隔爆電磁開關(guān)直接控制整個電源的交流輸入,再將交流電輸入變壓器降壓,經(jīng)整流、濾波、穩(wěn)壓電路1輸出直流電,給蓄電池充電。用過整流、濾波、穩(wěn)壓電路2輸出的直流電給負(fù)載供電,經(jīng)過切換電路,所選擇的一路輸出電壓經(jīng)過穩(wěn)壓、多重過流和過壓保護(hù)電路輸出可靠的本安電源。微控制器STM32F103模塊主要采集的備用蓄電池電壓值、本安輸出電壓值以及各種報警狀態(tài)等參數(shù)。CAN通信接口模塊將微控制器STM32F103模塊采集的數(shù)據(jù)傳輸至網(wǎng)絡(luò),通過上位機(jī)對各種數(shù)據(jù)進(jìn)行分析統(tǒng)計,給出當(dāng)前電源的運(yùn)行情況,監(jiān)控室也可以通過網(wǎng)絡(luò)控制電源的輸出狀態(tài),實現(xiàn)電源的智能化、網(wǎng)絡(luò)化管理。
2 電源硬件原理與實現(xiàn)
該本安電源由交流變壓及整流濾波電路、直流穩(wěn)壓電路、多重保護(hù)電路、充電及切換電路、微控制器系統(tǒng)電路、CAN接口電路等組成。
2.1 交流變壓及整流濾波原理
由于是煤礦井下電網(wǎng)供電的本安型電氣設(shè)備,則降壓所用的變壓器采用R型隔離變壓器,其輸入側(cè)采用變壓器抽頭方式。變壓器輸出24V和25V兩組交流電壓,整流濾波后輸出直流電壓,其中一路給本安輸出,另一路給蓄電池充電。如圖1所示,上面一路從變壓器25V輸出側(cè)引出,經(jīng)整流濾波電路1,通過穩(wěn)壓充電電路,為蓄電池充電;下面一路從變壓器24V輸出側(cè)引出,經(jīng)整流濾波電路2,輸出約32V的直流電壓,與蓄電池的輸出電壓通過切換電路進(jìn)行比較后選擇一路經(jīng)LM2576HV穩(wěn)壓開關(guān)電路,為本安輸出提供電源。
2.2 直流穩(wěn)壓開關(guān)電路
穩(wěn)壓電路核心器件采用可調(diào)的LM2576HV-ADJ開關(guān)穩(wěn)壓集成電路,解決了傳統(tǒng)的固定式穩(wěn)壓器和電位器調(diào)壓時精度不足的問題。LM2576HV內(nèi)置有完善的保護(hù)電路,包括電流限制和熱關(guān)斷電路等,利用該器件只需很少的器件便可構(gòu)成高效穩(wěn)壓電路,此外,該芯片還提供了工作狀態(tài)的外部控制引腳,該引腳的電平受微控制器STM32F103控制。
2.3 過壓、過流保護(hù)電路
由于井下存在眾多可燃性氣體,當(dāng)出現(xiàn)電路因過壓、過流而導(dǎo)致負(fù)載短路或者火花時,嚴(yán)重影響到煤礦的安全。故本安電源的設(shè)計中必須通過多重的過流、過壓保護(hù)電路,防止事故發(fā)生,該設(shè)計性能的好壞將直接影響整個系統(tǒng)是否具有實用的價值。如圖2所示,本安電源輸出電路整體思想是控制MOS管Q5和Q6的導(dǎo)通或關(guān)斷來實F的,電源過壓過流時,三極管Q4導(dǎo)通,集電極輸出18V,使得P溝道MOS管Q5截止;同時,N溝道MOS管Q6的G極電平為0,使Q6截止從而切斷負(fù)載的輸出。
當(dāng)電路出現(xiàn)過流或短路故障時,如圖2所示,電阻R32的電流增大,導(dǎo)致過流檢測點VIN_I的電壓大于閥值 [ ],經(jīng)過圖3中比較器LM393(U3)的處理,使得輸出端(U3的第7腳)呈低電平,再經(jīng)過比較電路LM393(U6)的處理,使得U6的第7腳輸出為低電平,這個低電平信號直接控制圖2中的三極管Q4,使Q4導(dǎo)通,Q5截止,切斷本安電源的輸出,起到過電流或短路保護(hù)作用。另一路過流或短路保護(hù)電路控制MOS管Q6,原理與其一致。