大學(xué)概率數(shù)理統(tǒng)計(jì)論文

時(shí)間:2022-10-06 04:53:06

導(dǎo)語(yǔ):大學(xué)概率數(shù)理統(tǒng)計(jì)論文一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。

大學(xué)概率數(shù)理統(tǒng)計(jì)論文

1教學(xué)的趣味性

課堂教學(xué)的趣味化,即結(jié)合學(xué)生感興趣的實(shí)際問(wèn)題引入概率知識(shí),激發(fā)學(xué)生的求知興趣,啟發(fā)學(xué)生的數(shù)學(xué)思維。內(nèi)容枯燥,教學(xué)方式單一是學(xué)生感覺(jué)課堂乏味的主要原因。在教學(xué)過(guò)程中,教師應(yīng)多結(jié)合學(xué)生感興趣的問(wèn)題,讓學(xué)生自己解決,這有助于提高學(xué)生的學(xué)習(xí)興趣。比如,在給出數(shù)學(xué)期望的定義時(shí),可以介紹學(xué)生的平均成績(jī)問(wèn)題:五名學(xué)生的成績(jī)分別為85,80,90,85,90,求這五名學(xué)生的平均成績(jī)。五名學(xué)生成績(jī)的概率分布如表1所示。通過(guò)觀察表1,學(xué)生很容易知道平均成績(jī)?yōu)?/5×(85+80+90+85+90)=80×1/5+85×2/5+90×2/5,這即是離散型隨機(jī)變量數(shù)學(xué)期望的形式。另外教師應(yīng)精簡(jiǎn)例題的數(shù)量,利用有層次的例題展現(xiàn)知識(shí)點(diǎn)。二維連續(xù)型隨機(jī)變量函數(shù)的加法分布是概率學(xué)習(xí)中的重點(diǎn)也是難點(diǎn),在講授時(shí),教師可以首先通過(guò)兩種方法(定義法和卷積公式法)計(jì)算X+Y型函數(shù)的分布使學(xué)生感受兩種方法的不同之處,然后介紹2X+Y型分布,使學(xué)生了解卷積公式不是萬(wàn)能的。

2教學(xué)的生活性

課堂教學(xué)的生活化,即通過(guò)生活中具體的實(shí)例討論概率的應(yīng)用,建立形象問(wèn)題和抽象思維之間的聯(lián)系。概率論與數(shù)理統(tǒng)計(jì)是一門實(shí)用性很強(qiáng)的科學(xué),在具體實(shí)際情況和數(shù)學(xué)概念、定理、公式之間建立正確的聯(lián)系,成為現(xiàn)在學(xué)生面臨的主要難題。教師在教學(xué)過(guò)程中可以分析一些具體的實(shí)例,使學(xué)生了解怎樣應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題。比如分析問(wèn)題“根據(jù)以往的臨床記錄,某種診斷癌癥的試驗(yàn)具有如下的效果:若被診斷者患有癌癥,則試驗(yàn)反應(yīng)為陽(yáng)性的試驗(yàn)反應(yīng)為陽(yáng)性的概率為0.95,若被診斷者沒(méi)有患有癌癥,則試驗(yàn)反應(yīng)為陰性的概率為0.95,且被試驗(yàn)的人患有癌癥的概率為0.005,問(wèn)如果被試驗(yàn)者反應(yīng)為陽(yáng)性,他患有癌癥的概率為多大?”這是一個(gè)題目很長(zhǎng)的實(shí)際問(wèn)題,學(xué)生一般無(wú)從下手,解決問(wèn)題的關(guān)鍵在于了解題目中涉及幾個(gè)條件和幾個(gè)隨機(jī)事件,只要準(zhǔn)確描述隨機(jī)事件就可以把實(shí)際問(wèn)題轉(zhuǎn)化為概率問(wèn)題。實(shí)際問(wèn)題的多次訓(xùn)練有助于培養(yǎng)學(xué)生用數(shù)學(xué)語(yǔ)言描述實(shí)際問(wèn)題的能力。

3教學(xué)的啟發(fā)性

教學(xué)的啟發(fā)性即給學(xué)生思考的時(shí)間,等學(xué)生無(wú)法想明白的時(shí)候再去開(kāi)導(dǎo)。具體來(lái)說(shuō)就是老師對(duì)上課提出的問(wèn)題給出學(xué)生思考的時(shí)間,在學(xué)生主動(dòng)思考之后,幫助學(xué)生開(kāi)啟思路?!疤铠喪健保皾M堂灌”的教學(xué)方法最容易使學(xué)生失去學(xué)習(xí)興趣??鬃釉弧安粦嵅粏?,不悱不發(fā)”,說(shuō)的就是要啟發(fā)學(xué)生思維,引導(dǎo)學(xué)生思路。比如,講授全概率公式之前引入實(shí)例:有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占30%,二廠生產(chǎn)的占50%,三廠生產(chǎn)的占20%,又知這三個(gè)廠的產(chǎn)品次品率分別為2%,1%,1%,問(wèn)從這批產(chǎn)品中任取一件是次品的概率是多少?撇開(kāi)概率知識(shí)不談,把這個(gè)問(wèn)題純粹看成一個(gè)數(shù)學(xué)問(wèn)題,也可以用中學(xué)知識(shí)解決,給學(xué)生幾分鐘思考的時(shí)間并適當(dāng)引導(dǎo)學(xué)生使用數(shù)形結(jié)合的方法討論,我們把產(chǎn)品在三個(gè)工廠的生產(chǎn)及次品情況轉(zhuǎn)化為產(chǎn)品分布圖,學(xué)生就很容易地知道從這批產(chǎn)品中任取一件次品的概率就是黑色橢圓區(qū)域在整個(gè)矩形內(nèi)所占的比例,經(jīng)過(guò)分析就可以得到全概率公式。該方法不僅能夠加深學(xué)生對(duì)該問(wèn)題的印象,還有助于學(xué)生對(duì)復(fù)雜全概率公式的理解。

4教學(xué)的研究性

教學(xué)的研究性,就是要培養(yǎng)學(xué)生解決新問(wèn)題的能力。在大學(xué)教育中僅僅教給學(xué)生課本上的知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,尤其是在現(xiàn)代科技迅速發(fā)展的情況下,應(yīng)該花大力氣培養(yǎng)學(xué)生解決未知問(wèn)題的思維能力。比如,在講授正態(tài)分布的概率密度函數(shù)的圖形特點(diǎn)時(shí),可以讓學(xué)生自己試著研究密度函數(shù)圖形的特點(diǎn)。首先引導(dǎo)學(xué)生根據(jù)高等數(shù)學(xué)的知識(shí)來(lái)研究函數(shù)圖形的以下特性:(1)奇偶性(對(duì)稱性);(2)單調(diào)性;(3)有界性;(4)凹凸性及拐點(diǎn)。接下來(lái)根據(jù)正態(tài)分布概率密度函數(shù)的具體形式分析密度函數(shù)圖形的特性。在概率論與數(shù)理統(tǒng)計(jì)的教學(xué)中,教學(xué)方法影響了學(xué)生對(duì)這門課程的掌握程度,成功的數(shù)學(xué)教育不僅要為學(xué)生提供數(shù)學(xué)知識(shí),還要對(duì)學(xué)生進(jìn)行數(shù)學(xué)的思維訓(xùn)練。采用靈活多變的教學(xué)方法和形式,致力培養(yǎng)學(xué)生的綜合素質(zhì)能力是我們永恒的目標(biāo)。

作者:張麗麗單位:石家莊鐵道大學(xué)數(shù)理系